Study of Vector Boson Scattering and Search for New Physics in Events with Two Same-Sign Leptons and Two Jets

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.114.051801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Jun 30 08:20:05 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/97403</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 3.0 Unported Licence</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
A study of vector boson scattering in \(pp \) collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb\(^{-1} \) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign \(W \)-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for \(W^\pm W^\pm \) and \(WZ \) processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.

DOI: 10.1103/PhysRevLett.114.051801

Vector boson scattering (VBS) and quartic boson couplings are features of the standard model (SM) that remain largely unexplored by the LHC experiments. The observation of a Higgs boson [1–3], in accordance with a key prediction of the SM, motivates further study of the mechanism of electroweak symmetry breaking through measurements of VBS processes. In the absence of the SM Higgs boson, the amplitudes for these processes would increase as a function of center-of-mass energy and ultimately violate unitarity [4,5]. The Higgs boson actually observed by the LHC experiments may restore the unitarity, although some scenarios of physics beyond the SM predict enhancements for VBS through modifications to the Higgs sector or the presence of additional resonances [6,7].

This Letter presents a study of VBS in \(pp \) collisions at \(\sqrt{s} = 8 \) TeV. The data sample corresponds to an integrated luminosity of 19.4 \(\pm 0.5 \) fb\(^{-1} \) collected with the CMS detector [8] at the LHC in 2012. The aim of the analysis is to find evidence for the electroweak production of same-sign \(W \)-boson pair events. The strong production cross section is reduced by the same-sign requirement, making the experimental signature of same-sign dilepton events with two jets an ideal topology for VBS studies. Candidate events have exactly two identified leptons of the same charge, two jets with large rapidity separation and dijet mass, and moderate missing transverse energy. The final states considered are \(\mu^+ \mu^- \nu_{\mu} \nu_{\mu} jj \), \(e^+ e^- \nu_e \nu_e jj \), \(e^+ \mu^- \nu_e \nu_{\mu} jj \), and their charge conjugates and \(\tau \)-lepton decays to electrons and muons. Figure 1 shows representative Feynman diagrams for the electroweak and QCD induced production.

The study of VBS presented here leads to measurements of the production cross sections for \(W^\pm W^\pm \) and \(WZ \) in a fiducial region. Evidence for electroweak production has been reported by the ATLAS Collaboration [9]. Various extensions of the SM alter the couplings of vector bosons. An excess of events could signal the presence of anomalous quartic gauge couplings (AQGCs) [10]. Doubly charged Higgs bosons are predicted in Higgs sectors beyond the SM where weak isotriplet scalars are included [11,12]; they can be produced via weak vector-boson fusion (VBF) and decay to pairs of same-sign \(W \) bosons [13].
The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter, and a brass or scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the magnet. The first level of the CMS trigger system, composed of custom hardware processors, is designed to select the most interesting events within 3 µs, using information from the calorimeters and muon detectors. The high level trigger processor farm further reduces the event rate to a few hundred hertz before data storage. Details of the CMS detector and its performance can be found elsewhere [8].

Several Monte Carlo (MC) event generators are used to simulate the signal and background processes. The leading-order event generator MadGraph 5.2 [14] is used to produce event samples of diboson production via diagrams with two or fewer powers of $α_s$ and up to six electroweak vertices. This includes two categories of diagrams: those with exactly two powers of $α_s$ which we refer to as quantum chromodynamic (QCD) production and those with no powers of $α_s$, which we refer to as electroweak (EW) production. The EW category includes diagrams with WWW quartic interactions and diagrams where two same-sign W bosons scatter through the exchange of a Higgs boson, a Z boson, or a photon. Double-parton scattering, triboson production, and doubly charged Higgs boson production samples are also generated using MadGraph 5.2. Top-quark background processes are generated with the next-to-leading-order event generator Powheg 1.0 [15-18]. The set of parton distribution functions (PDFs) used is CTEQ6L [19] for MadGraph and CT10 [20] for Powheg. All event generators are interfaced to Pythia 6.4 [21] for the showering of the partons and subsequent hadronization. The Pythia parameters for the underlying event were set according to the Z21 tune [22]. The detector response is simulated by the Geant4 package [23] using a detailed description of the CMS detector. The average number of simultaneous proton-proton interactions per bunch crossing in the 8 TeV data is approximately 21; additional pp interactions overlapping with the event of interest are included in the simulated samples. Collision events are selected by the trigger system requiring the presence of one or two high transverse momentum (p_T) muons or electrons. The trigger efficiency is greater than 99% for events that pass all other selection criteria explained below. A particle-flow algorithm [24,25] is used to reconstruct all observable particles in the event. It combines all the subdetector information to reconstruct individual particles and identify them as charged hadrons, neutral hadrons, photons, and leptons. The missing transverse energy E_T^{miss} is defined as the magnitude of the negative vector sum of the transverse momenta of all reconstructed particles (charged and neutral) in the event.

The selection of events aims to single out same-sign dilepton events with the VBS topology while reducing the top quark, Drell-Yan, and WZ background processes. All objects are selected following the methods described in Ref. [26]. To avoid bias, the number of events passing the selection was not evaluated until the analysis was complete. Two same-sign lepton candidates, muons or electrons, with $p_T > 20$ GeV and $|η| < 2.4(2.5)$ for muons (electrons) are required to be isolated from other reconstructed particles in a cone of $ΔR = 0.3$, where $ΔR = \sqrt{Δη^2 + Δφ^2}$. Jets are reconstructed using the anti-k_t clustering algorithm [27] with a distance parameter $R = 0.5$, as implemented in the FastJet package [28,29]. Events are required to have at least two selected jets with $E_T > 30$ GeV and $|η| < 4.7$. The VBS topology is targeted by requiring that the two jets with leading p_T have large dijet mass, $m_{jj} > 500$ GeV, and large pseudorapidity separation, $|Δη_{jj}| > 2.5$.

To suppress top-quark backgrounds ($t\bar{t}$ and tW), a top-quark veto technique is used; it is based on the presence of a soft muon in the event from the semileptonic decay of the bottom quark and on bottom-quark jet tagging criteria based on the impact parameters of the constituent tracks [30]. A minimum dilepton mass, $m_{ll} > 50$ GeV, is required to reduce the $W +$ jets and top-quark background processes. To reduce the background from WZ production, events with a third, loosely identified lepton with $p_T > 10$ GeV are rejected. Drell-Yan events can be selected if the charge of one lepton is measured incorrectly. To reduce this background, $|m_{ee} - m_\gamma| > 15$ GeV is required for e^+e^- events. The charge confusion in dimuon events is negligible. The Drell-Yan background is further reduced by requiring $E_T^{miss} > 40$ GeV.

The nonprompt lepton background originating from leptonic decays of heavy quarks, hadrons misidentified as leptons, and electrons from photon conversions, is suppressed by the identification and isolation requirements imposed on muons and electrons. The remaining contribution from the nonprompt lepton background is estimated directly from data. The efficiency for a predefined loose leptonlike object to pass the full lepton selection, typically called the “tight-to-loose ratio” (R_{TL}), is estimated in a control sample with one additional lepton candidate that passes the standard lepton selection criteria. To account for the dependence on kinematic observables, this ratio is parameterized as a function of p_T and $η$. Systematic uncertainties are obtained by the application of R_{TL} to other control samples, accounting for the sample dependence in the estimation of R_{TL}. The $WZ \rightarrow 3ℓν$ process is normalized in a data control region by requiring a third fully identified lepton with $p_T > 10$ GeV. The contribution of opposite-sign dilepton events to the signal region is estimated by applying data-to-simulation charge misidentification scale factors to simulated events with two opposite-sign leptons. The charge-misidentification fraction is estimated using Z boson events and is found to be between
TABLE I. Signal and background yields after the full selection. Only statistical uncertainties are reported. The signal, \(W^± W^± jj\), includes EW and QCD processes and their interference.

<table>
<thead>
<tr>
<th></th>
<th>Nonprompt</th>
<th>WZ</th>
<th>VVV</th>
<th>Wrong sign</th>
<th>WW DPS</th>
<th>Total bkg.</th>
<th>(W^± W^± jj)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W^+ W^+)</td>
<td>2.1 ± 0.6</td>
<td>0.6 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>3.1 ± 0.6</td>
<td>7.1 ± 0.1</td>
<td>10</td>
</tr>
<tr>
<td>(W^− W^−)</td>
<td>2.1 ± 0.5</td>
<td>0.4 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>⋯</td>
<td>⋯</td>
<td>2.6 ± 0.5</td>
<td>1.8 ± 0.1</td>
<td>2</td>
</tr>
<tr>
<td>(W^± W^±)</td>
<td>4.2 ± 0.8</td>
<td>1.0 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>5.7 ± 0.8</td>
<td>8.9 ± 0.1</td>
<td>12</td>
</tr>
</tbody>
</table>

0.1% and 0.3% for electrons, while it is negligible for muons.

After the full selection, about 15% of the background is due to the \(WZ → 3\ell ν\) process and about 75% to nonprompt leptons. Backgrounds from opposite-sign lepton pairs misreconstructed as same-sign (“wrong-sign background”), \(WW\) production via double parton scattering (DPS), and triboson production (\(VVV\)), which includes top-pair plus boson processes, contribute less than 10%.

The expected signal and background yields are shown in Table I for positive and negative pairs separately and for their sum. The signal corresponds to \(W^± W^±\) production, including EW and QCD contributions, and their interference, which amounts to approximately 10%. The EW processes constitute 85%–90% of the total signal contribution. The \(m_{jj}\) and leading-lepton \(p_T\) distributions for the signal and background processes are shown in Fig. 2. In order to quantify the significance of the observation of the production via VBS, a statistical analysis of the event yields is performed in eight bins: four bins in \(m_{jj}\) with two bins in the lepton charge.

The signal efficiencies are estimated using simulated samples. In the statistical analysis, shape and normalization uncertainties are considered. The shape uncertainties are estimated by remaking the distribution of a given observable after considering the systematic variations for each source of uncertainty. The lepton trigger, reconstruction, and selection efficiencies are measured using \(Z/γ^* → ℓ^+ ℓ^−\) events that provide an unbiased sample with high purity. The estimated uncertainty is 2% per lepton. The uncertainties due to the momentum scale for electrons and muons are also taken into account and contribute 2%. The jet energy scale and resolution uncertainties give rise to an uncertainty in the yields of about 5%. The uncertainty in the event selection efficiency for events with neutrinos yielding genuine \(E_T^{miss}\) in the final state is assessed and leads to an uncertainty of 2%. The uncertainty in the estimated event yields, which is related to the top-quark veto, is evaluated by using a \(Z/γ^* → ℓ^+ ℓ^−\) sample with at least two reconstructed jets and is found to be about 2%. The statistical uncertainty in the yield of each bin and for each process is also taken into account. The uncertainty of 2.6% in the integrated luminosity [31] is considered for all simulated processes. The normalization of the processes with misidentified leptons has a 36% systematic uncertainty [26], which has two sources: the dependence on the sample composition and the method used to estimate it. The \(WZ\) normalization uncertainty is 35%, dominated by the small number of events in the trilepton control region. Theoretical uncertainties are estimated by varying the

![Fig. 2 (color online). The distributions of \(m_{jj}\) (top) and leading lepton \(p_T\), \(p_T^{\ell\text{max}}\), in the signal region (bottom). The hatched bars include statistical and systematic uncertainties. The \(W^+ W^+\) and \(W^- W^-\) candidates are combined in these distributions. The signal, \(W^± W^± jj\), includes EW and QCD processes and their interference. The histograms for other backgrounds include the contributions from wrong-sign events, DPS, and VVV processes.](image)
renormalization and factorization scales up and down by a factor of two from their nominal value in the event, and found to be 5% for the signal normalization and 50% for the triboson background normalization. A PDF uncertainty of 6%–8% in the normalization of the signal and WZ processes is included. The systematic uncertainties of the background normalizations are taken into account using log-normal distributions.

The cross section is extracted for a fiducial signal region. The fiducial region is defined by requiring two same-sign leptons with $p_T > 10$ GeV and $|\eta_l| < 2.5$, two jets with $p_T > 20$ GeV and $|\eta_j| < 5.0$, $m_{jj} > 300$ GeV, and $|\Delta R_{jj}| > 2.5$ and is less stringent than the event selection for our signal region. The measured cross section is corrected for the acceptance in this region using the MadGraph MC generator, which is also used to estimate the theoretical cross section. The acceptance ratio between the selected signal region and the fiducial region is 36% considering generator-level jet and lepton properties only. The overall acceptance times efficiency is 7.9%.

The MadGraph prediction of the same-sign W-boson pair cross section is corrected by a next-to-leading order to leading-order cross section ratio estimated using VBFNLO [32–34]. The fiducial cross section is found to be $\sigma_{\text{fid}}(W^+W^-jj) = 4.0^{+2.6}_{-2.0}(\text{stat})^{+1.1}_{-1.0}(\text{syst})$ fb with an expectation of 5.8 ± 1.2 fb.

In addition to the dilepton same-sign signal region, a $WZ \rightarrow 3\ell\nu$ control region is studied by requiring an additional lepton with $p_T > 10$ GeV. This control region allows the measurement of a fiducial cross section of the $WZjj$ process and is $\sigma_{\text{fid}}(WZjj) = 10.8 \pm 4.0(\text{stat}) \pm 1.3(\text{syst})$ fb with an expectation of 14.4 ± 4.0 fb. The fiducial region is defined in the same way as for the WW analysis, but requiring one more lepton with $p_T > 10$ GeV and $|\eta_l| < 2.5$. The acceptance ratio between the selected signal region and the fiducial region is 20% considering generator-level jet and lepton properties only. The overall acceptance times efficiency is 3.6%.

To compute the limits and significances, the CL_s [35–37] construction is used. The observed (expected) significance for the $W^\pm W^\pm jj$ process is $2.0\sigma (3.1\sigma)$. Considering the QCD component of the $W^\pm W^\pm jj$ events as background and the EW component together with the EW-QCD interference as signal, the observed (expected) signal significance reduces to $1.9\sigma (2.9\sigma)$.

Various extensions to the SM alter the couplings between vector bosons. Reference [10] proposes nine independent C- and P-conserving dimension-eight effective operators to modify the quartic couplings between the weak gauge bosons. The variable $m_{\ell\ell}$ is more sensitive to AQGCs than $p_T^{\ell\ell}$, $m_{\ell\ell;jj}$, and m_{jj}. Figure 3 (top) shows the expected $m_{\ell\ell}$ distribution for three values of $F_{T,0}/\Lambda^4$; Λ is the scale of new physics and $F_{T,0}$ is the coefficient of one of the nine effective operators. The observed and expected upper and lower limits at 95% confidence level (C.L.) on the nine coefficients are shown in Table II, where all the results are obtained by varying the effective operators one by one. The effect of possible AQGCs on the WZ process in the signal region is negligible. Some operators for anomalous quartic gauge boson couplings may lead to tree-level unitarity violation. We also report the values of the operator coefficient for which unitarity is restored at the scale of 8 TeV, the unitarity limit. In addition to the limits on individual operator coefficients, the expected and observed two-dimensional 95% C.L. for $F_{S,0}/\Lambda^4$ and $F_{S,1}/\Lambda^4$ are presented in Fig. 3 (bottom): a linear combination of those operators leads to a scaling of the SM cross section.

Doubly charged Higgs bosons are predicted in models that contain a Higgs triplet field. Some of these scenarios include...
predict same-sign dilepton events from $W^\pm W^\pm$ decays with a VBF topology. The cross section for VBF production of $H^{\pm \pm}$ and decay to $W^\pm W^\pm$ is directly proportional to the vacuum expectation value of the triplet. The remaining five parameters in the model of the Higgs potential are adjusted to get the given parameters in the model of the Higgs potential are adjusted to get the given vacuum expectation value of the triplet. The remaining five parameters in the model of the Higgs potential are adjusted to get the given vacuum expectation value of the triplet.

In summary, a study of vector boson scattering in pp collisions at $\sqrt{s} = 8$ TeV has been presented based on a data sample corresponding to an integrated luminosity of 19.4 fb$^{-1}$. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for $W^\pm W^\pm$ and WZ processes in the fiducial region are reported.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Estadual Paulista, São Paulo, Brazil
13Universidade Federal do ABC, São Paulo, Brazil
14Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19University of Split, Faculty of Science, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

051801-12
36 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37 Deutsches Elektronen-Synchrotron, Hamburg, Germany
38 University of Hamburg, Hamburg, Germany
39 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
41 University of Athens, Athens, Greece
42 University of Ioánnina, Ioánnina, Greece
43 Wigner Research Centre for Physics, Budapest, Hungary
44 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45 University of Debrecen, Debrecen, Hungary
46 National Institute of Science Education and Research, Bhubaneswar, India
47 Panjab University, Chandigarh, India
48 University of Delhi, Delhi, India
49 Saha Institute of Nuclear Physics, Kolkata, India
50 Bhabha Atomic Research Centre, Mumbai, India
51 Tata Institute of Fundamental Research, Mumbai, India
52 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
53 University College Dublin, Dublin, Ireland
54a INFN Sezione di Bari, Bari, Italy
54b Università di Bari, Bari, Italy
54c Politecnico di Bari, Bari, Italy
55a INFN Sezione di Bologna, Bologna, Italy
55b Università di Bologna, Bologna, Italy
56a INFN Sezione di Catania, Catania, Italy
56b Università di Catania, Catania, Italy
56c CSFNSM, Catania, Italy
57a INFN Sezione di Firenze, Firenze, Italy
57b Università di Firenze, Firenze, Italy
58 INFN Laboratori Nazionali di Frascati, Frascati, Italy
59a INFN Sezione di Genova, Genova, Italy
59b Università di Genova, Genova, Italy
60a INFN Sezione di Milano-Bicocca, Milano, Italy
60b Università di Milano-Bicocca, Milano, Italy
61a INFN Sezione di Napoli, Napoli, Italy
61b Università di Napoli ‘Federico II’, Napoli, Italy
61c Università della Basilicata (Potenza), Napoli, Italy
61d Università Guglielmo Marconi (Roma), Napoli, Italy
62a INFN Sezione di Padova, Padova, Italy
62b Università di Padova, Padova, Italy
62c Università di Trento (Trento), Padova, Italy
63a INFN Sezione di Pavia, Pavia, Italy
63b Università di Pavia, Pavia, Italy
64a INFN Sezione di Perugia, Perugia, Italy
64b Università di Perugia, Perugia, Italy
65a INFN Sezione di Pisa, Pisa, Italy
65b Università di Pisa, Pisa, Italy
65c Scuola Normale Superiore di Pisa, Pisa, Italy
66a INFN Sezione di Roma, Roma, Italy
66b Università di Roma, Roma, Italy
67a INFN Sezione di Torino, Torino, Italy
67b Università di Torino, Torino, Italy
67c Università del Piemonte Orientale (Novara), Torino, Italy
68a INFN Sezione di Trieste, Trieste, Italy
68b Università di Trieste, Trieste, Italy
69 Kangwon National University, Chunchon, Korea
70 Kyungpook National University, Daegu, Korea
71 Chonbuk National University, Jeonju, Korea
72 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
73 Korea University, Seoul, Korea
74 University of Seoul, Seoul, Korea